
Dynamic SLAM using Landscape Theory of Aggregation*

Akshit Gandhi1, Avinash Hemaeshwara Raju1 and Parv Parkhiya1

{akgandhi, ahemaesh, pparkhiy}@andrew.cmu.edu

Abstract— Simultaneous Localization and Mapping (SLAM)
is an essential part of any mobile robot. While the current state-
of-the-art approach solves the problem in a static environment
reasonably well, the performance in a dynamic environment is
hit or miss. The traditional SLAM method assumes that the
number of measurements from static objects would be large
enough to dominate measurements from dynamic objects. We
advocate for the explicit filtering of measurements from dy-
namic objects for better localization and mapping performance.
We use the landscape theory of aggregation method to form an
optimization problem. We observe the measurements for a time-
window and compute weights for the optimization. We perform
gradient descent to minimize the energy to classify and filter
out measurements from dynamic objects. Finally, using ROS’s
GMapping Package we show improved SLAM output.

I. INTRODUCTION

The majority of the traditional SLAM problems have
been addressed for static environments. The literature on
addressing the SLAM problem in dynamic environments
is quite limited. With the advent of self-driving cars and
factory automation robots, the impact of robot localization
in the dynamic environment has become more profound. In
this project, we implemented the existing Dynamic SLAM
approach described in [1] and improved upon this approach.

The proposed approach utilizes theory originally proposed
in a political science journal titled Landscape Theory of
Aggregation[2] of all places. While the traditional SLAM
algorithm assumes that all the features are static and hopes
that the high number of static features will counter the
misleading measurements provided by dynamic features,
Landscape Theory of Aggregation will allow us to classify
the features into the static and the dynamic set. This allows
the explicit use of just stationary features in our SLAM
pipeline resulting in the improved map and localization out-
put. Also, the structure of the proposed approach allows for
integration with any existing SLAM system to get improved
results in dynamic environments.

The novelty of the paper is in classifying features into
static and dynamic classes. The classification is performed
by finding a least-squares optimization solution to the set of
correspondences that are to be classified as static or dynamic.
Also, the proposed approach requires traditional SLAM once
classification is performed to get robot trajectory and map.

*This work was done as a part of 16833-A Robot Localization And
Mapping Course Project Fall-2019 at CMU by Team SLAM Dunk

*Source code can be found at https://github.com/ahemaesh/
Dynamic_SLAM_using_Landscape_Theory_of_Aggregation

1Akshit Gandhi, Avinash Hemaeshwara Raju and Parv Parkhiya are
MRSD students at Carnegie Mellon University, Pittsburgh

We used LIDAR, Odometry, and GMapping to work along
with the binary classifier to get final SLAM output.

II. LITERATURE REVIEW

Dynamic SLAM problem is one of the not fully solved
critical problems today. While traditionally, SLAM in the
dynamic environment has not been explored in-depth, many
recent papers have shown promising results using different
approaches. The most popular approach, particularly for
visual SLAM, is to use semantic segmentation using deep
convolutional neural networks. [3][4] CNNs have shown
great generalization when trained on the large dataset.

Semantics-based approaches filter the measurement that
when projected on the image plane belongs to objects that
are likely to be dynamic. For example, Cars, Pedestrians are
likely to be moving in the scene and hence measurements
corresponding to them are used to filter out. However, we
might be losing good features as cars can be stationary in
the scene. Also, training these deep semantics networks takes
a large amount of data and time and are prone to failure in
unexpected cases.

Another approach of solving SLAM in a dynamic en-
vironment is to assume some kind of motion model prior
on the dynamic objects in the scene. [5][6] While they
show promising results, fundamentally they are limited in
terms of scalability to various diverse types of dynamic
environment. An ideal approach should identify the dynamic
feature without worrying about their semantics and prior
assumption on its motion model.

The method proposed in [1] is one such method, that
uses landscape theory of aggregation to differentiate be-
tween dynamic and static features/landmarks without any
prior knowledge. While the result may not as impressive as
semantic SLAM or SLAM with a prior motion model, it
makes up for it with generalized wide applicability instead
of the narrow focus of other approaches.

III. THEORY

A background on Landscape Theory of Aggregation in
terms of political science as described in paper2

“Aggregation means the organization of elements of a sys-
tem into patterns that tend to put highly compatible elements
together and less compatible elements apart. Landscape
theory predicts how aggregation will lead to alignments
among actors (such as nations), whose leaders are myopic
in their assessments and incremental in their actions. ”

The predicted configurations are based upon the attempts
of actors to minimize their frustration based upon their

https://github.com/ahemaesh/Dynamic_SLAM_using_Landscape_Theory_of_Aggregation
https://github.com/ahemaesh/Dynamic_SLAM_using_Landscape_Theory_of_Aggregation

pairwise compatibility. For the implementation of Landscape
Theory of Aggregation in SLAM, we see that the frustration
score in a set of only static correspondences or in a set of
only dynamic correspondences is the least. We calculate a
propensity score which gives us the influences of one cor-
respondence on another correspondence. Also, this influence
is a measure of the weight of the correspondence, which
is analogous to small nation-big nation theory – “a source
of conflict with a small country is not as important for
determining alignments as an equivalent source of conflict
with a large country”. Based on the propensity score, our
classifier tries to achieve the minimum energy state by
accurately classifying correspondences into static or dynamic
classes. Once we have classified correspondences, we omit
dynamic correspondences and perform SLAM using the
static correspondences.

We minimize the following cost function for classifica-
tion as proposed in [1] which essentially summation of the
frustration of each landmark with every other landmark:

E(G) =
1

2

n∑
i=1

n∑
i 6=j=1

SjPij

Si

m∑
c=1

(uic − ujc)2 (1)

where,
si - weight of the ith feature point
uic - boolean if ith feature is in cth class
pij - propensity score between feature point i and j
ujc - boolean if jth feature is in cth class
m - number of class
n - total number of features
k - current timestamp
t - window size
lik - pose of ith feature at kth time in global frame
σ2
x - covariance of x

The size/weight is defined as

si =
1

σ2
x

(2)

The propensity or compatibility score between two land-
marks is defined as

pij = 1− 1

t

t∑
a=1

||d(k)(k+a)
Ai

− d(k)(k+a)
Aj

|| (3)

The distance between same landmarks across time is
defined as

d
(k)(k+a)
Ai

= ||lki − lk+a
i || (4)

IV. DATASET

We initially tested our implementation on the WeanHall
dataset Robotdata1.log consisting of odometry and laser-
scans that was provided as part of our in-class particle filter
assignment. We later collected our own data-set using a
SICK LIDAR and an Intel Real-Sense camera mounted on
a Clearpath Husky robot as seen in fig 1. In our dataset

Fig. 1. Husky with SICK LIDAR used for data collection

collection, we recorded the wheel odometry data of the
Husky, the laser-scans of the SICK LIDAR and the RGB
image frames of the Intel Real-Sense for visualization in
a ROSbag. We also recorded the transforms(tf-tree) from
the Husky base-link to SICK LIDAR and base-link to Intel
Real-Sense camera. We mimicked a dynamic environment
by walking in front of a moving Husky.

V. IMPLEMENTATION

Fig. 2. Final output from the optimizer

We implemented the complete pipeline from getting raw
sensor data to getting final SLAM output as shown in figure
2. A brief overview of the pipeline can be found below and
is followed by a detailed description of specific parts.

Our dynamic SLAM module takes input in a specific
format. We had dataset in 2 different formats, so we wrote
a logger module that can listen to ROS topics and create
a text file that our module can then process. Once data
is loaded, we first perform data association. After that, we
compute weights for our optimization problem as mention in
the theory section. We run our custom optimizer to get the
final classification output of dynamic and static. We construct
a new laserscan message with laserscan points from dynamic
objects filtered out. Finally, we provide all the necessary
interface (tf, odometry, laserscan) to the ROS GMapping
package and visualize the output in the RVIZ.

A. Data Association

Data association is a vital part of the pipeline as the
weights for the optimization are computed based on how as-
sociated laserscan points vary in a common reference frame.
We use the nearest neighbor approach for data association.
It’s important to note here that the particular association done
here is not used later in the SLAM pipeline. SLAM pipeline
computes its own association based on the occupancy grid

Fig. 3. Nearest Neighbor Association

map it builds in the global reference frame and is separate
from common local frame association done here which is
used to filter out dynamic points.

Common local frame association is done in the window
size of 20 time-steps. Laser scan points are transformed in
the reference frame of the first time-step using pure odometry
data. Since the local drift of odometry data in a time-window
is limited, a simple approach of the nearest neighbor works
reasonably well for our purpose. As shown in figure 3,
laserscans at two different time-step (shown in yellow and
blue) are associated based on Euclidean distance. We also use
reject associations which are more than a certain threshold
radius. Laserscan points that find association throughout all
the time-steps in the window are kept for classification and
rest are marked as dynamic.

B. Ceres Based Optimizer

Our first attempt to solve the optimization problem was
using Ceres-Solver library[7]. Ceres is a non-linear least-
square library written in C++. For the particular optimization
of classifying into dynamic and static, we need an optimized
parameter to be a binary variable. But Ceres (most opti-
mization library for that matter) only supports continuous
variables.

We came with additional cost functions to force the
continuous variable into 2 discrete states. Our first choice
for two discrete states was 0 and 1 but when we tested our
code, we realized that the optimization gradient step does not
jump from 0 to 1 since they are far apart. When we choose
the two states to be 0 and 0.001, the optimization was able
to freely jump from 0 to 0.001 and vice-versa to minimize
the cost. This particular binary constraint was added using
equation (5).

cost : w1 ∗
∥∥ui∥∥2 + w2 ∗

∥∥ui − 0.001
∥∥2 (5)

The system was also prone to get stuck in local minima
where all the variables were assigned the same dynamic or
static class. To avoid that, we added additional cost to heavily
penalize the assignment of all the variables to the same class

as shown in equation (6).

cost :

 w1
n∑

i=1

∣∣ui∣∣


2

+

 w2
n∑

i=1

∣∣ui − 0.001
∣∣


2

(6)

The proposed approach worked on the toy problem we
created with just 6 variables but when we tested the optimizer
on real data with up to 180 variables, the optimization
process became extremely slow to the point of being simply
unacceptable. The reason we suspect is the following: Since
there exist constraints between every pair of laserscan points,
the "A" matrix would be fully dense. Another reason could
be searching for a binary gradient on a continuous variable
that will lead to many unnecessary gradient computations
that are rejected. Therefore, we decided to write our own bi-
nary optimizer from scratch which works on explicit Boolean
variables.

C. Custom Binary Optimizer

We implemented a custom binary optimizer from scratch
that takes an initial guess of dynamic and static classification,
minimizes energy function as mention in equation (1) and re-
turns final state vector with dynamic and static classification.

Our binary optimizer idea is quite similar to the traditional
gradient descent algorithm with the only difference being the
presence of a binary gradient. Since optimizable parameters
are Boolean variables and each can only take 2 values, a
gradient step at any time can be of either flipping the state
or keeping the state of the variable as it is. An example of
one such gradient step iteration is shown in figure 4.

Fig. 4. An iteration of binary optimizer

Computation of energy function E has a complexity of
O(n2) where n is the number of laserscan points. But
we are only interested in minimizing energy. Therefore
while computing whether to flip a variable or not, we can
marginalize out all the rest and just compute ∆E for flipping
which has a complexity of O(n).

We also need an initial guess for the optimization. We
use threshold on mean(dAi

) from equation (4) to decide the
initial guess for the classification of each laserscan point. If
the mean is less than the threshold, the initial guess for the
laserscan point is considered static else dynamic.

VI. RESULTS

The primary objective of this project was to segment
the static and dynamic laserscan points. We first started by
running our pipeline on the raw laserscan data (as shown
in fig: 5) to get an initial guess of the static and dynamic
points (shown in fig:6) and this initialization is passed onto
our binary optimizer to get the final segmentation between
static and dynamic landmarks (shown in figure 7).

Fig. 5. Raw laserscan input to the pipeline

Fig. 6. Initial segmentation for the optimizer

Fig. 7. Final output from the optimizer

The initial guess for the static v/s dynamic segmentation
was obtained using the method described in the previous
sections. The green points are the laserscan points which
are classified as static and the red ones are the dynamic
landmarks. The figures shown in 5, 6 & 7 are obtained from
a sequence in the robotdata1.log given to us as a part of
the Homework 1 on particle filter. The segmentation results
clearly show that the person (walking in front of the robot) is
a dynamic object and thus the laserscan points which corre-
spond to its legs are classified as dynamic and the rest (which
majorly constitute the structure like walls) are classified as
static. Since the output images shown are for one timestep
we visualized the static and dynamic segmentation over the
complete log using RVIZ. The output of which is captured
in a video https://youtu.be/aJXhTr-SyeE. If one

observes the sequence in the video, a natural question spawns
about the laserscan points closer and very far away from
the LIDAR which are being classified as dynamic. This is
because of our conservative approach. For the points that are
very close to the LIDAR, there is a high chance that they may
not be any associated laserscan point across multiple frames
(which is used in our landscape theory) and hence they are
classified as dynamic but this doesn’t hurt the results because
such points may already have been classified as static in the
previous time-steps. Also, similar reasoning is true for the
very far objects detected by the laserscan. These results can
be seen in fig:8.

Fig. 8. Laserscan segmentation visualized in RViz

Finally, the output of the SLAM pipeline with and without
Dynamic SLAM can be seen in the fig:9 and fig:10. The
black points corresponding to trajectory from raw odometry
data and red points corresponds to output trajectory by
GMapping.

So as we can clearly see from the figure 9-10 and figure
11-12 that if we don’t use dynamic slam, the occupancy
map which is built has many holes/other artifacts which map
to uncertain regions in the map and hence after filtering
through our algorithm the map which is obtained is free
of any such holes or artifacts. The full runs of SLAM
for the robotdata1.log and our captured log can be seen
in these videos: https://youtu.be/Am5gR6rEqZA &
https://youtu.be/_B_P1TQPGAs

VII. CHALLENGES
The primary challenge we faced was with binary opti-

mization where the output of our optimizer/classifier was
constrained in static or dynamic (like 0 or 1). We used ceres
solver which outputs a continuous variable. We tried different
approaches to constrain the output of the ceres solver, but
given the size of the search space, it was very slow at
optimizing values for 180 laserscan points. The optimizer
was very slow it took upwards of 60 mins. The optimizer
works really well for sample inputs of size 6 but the time
complexity scaled exponentially for the actual inputs.

The other challenge was with dataset integration with our
pipeline. As our software was developed using the txt/log file
provided in Assignment 1, it became necessary to modify

https://youtu.be/aJXhTr-SyeE
https://youtu.be/Am5gR6rEqZA
https://youtu.be/_B_P1TQPGAs

Fig. 9. Traditional SLAM on collected dataset

Fig. 10. Dynamic SLAM on collected dataset

our collected dataset into this format. The dataset was in the
form of a ROSbag and thus we had to write a log writer
tool that converted the ROSbag into a txt file as expected
by the pipeline. After running the entire pipeline we found
that the map being built was very very small in scale. After
analyzing the logs we realized that the HW1 logs had the
scale in centimeters and our ROSbag was collected on a
metric scale. Finally, we found the issue and changed the
log writer to account for the conversion. Debugging this issue
took quite some time.

Other secondary challenges were in developing interfaces.
Our classified output was a vector of 180 points but to feed it
into a GMapping ROS package, we had to convert them into
a laserscan message, publish the odometry and the odometry
TF, etc. Also, we had to write our own visualizer tool from
scratch to see the static and dynamic segmentation since we
could not use something like Matplotlib as we were working
with C++. The visualizer plots the points on an empty black
image shows them to the user and also publishes the images
on a ROS topic.

VIII. FUTURE WORK

In terms of future work, it would be interesting to explore
more into the below regions:
• Testing the system on a diverse dataset with ground

truth for quantitative analysis
• Adapting the system for 3D LIDAR / image-feature

based landmarks
• Extending to multi-class classification where each non-

static class corresponds to feature points belonging to a

Fig. 11. Traditional SLAM on Robotdata1.log

Fig. 12. Dynamic SLAM on Robotdata1.log

particular dynamic object. It could help with dynamic
object segmentation and tracking also and thus is a very
interesting idea. It would also enable modeling motion
of various dynamic objects in the scene.

• Apart from these it would be interesting to see the
qualitative results where the dynamic object occupies
a major chunk of the laserscan data. We believe that
the traditional method will fail miserably so it would
be interesting to see the comparison.

IX. CONCLUSIONS

To summarize as a part of this project:
• We successfully implemented the idea mentioned in the

"Landscape Theory of Aggregation" paper and shown
qualitative improvements in the generated map

• We designed our own binary optimizer
• A tool to convert ROS bags into the desired log formats,

which makes it very generalize-able across different
projects

• Custom visualizer for C++ which plots the static and
dynamic laserscan points

• Collected our own dataset to demonstrate the working
of the pipeline

REFERENCES

[1] Hua, C., Dou, L., Fang, H. et al. J. Cent. South Univ. (2016)
: A novel algorithm for SLAM in dynamic environments using
landscape theory of aggregation https://doi.org/10.1007/
s11771-016-3320-9

[2] Robert Axelrod and D. Scott Bennett(1993): A Landscape Theory
of Aggregation. British Journal of Political Scienc http:
//www-personal.umich.edu/~axe/Ax%20Bennett%
20Landscape%20BJPS%201993.pdf

[3] Chao Yu, Zuxin Liu, Xinjun Liu, Fugui Xie, Yi Yang, Qi Wei,
Qiao Fei. DS-SLAM: A Semantic Visual SLAM towards Dynamic
Environments. https://arxiv.org/abs/1809.08379

[4] Linhui Xiao, Jinge Wang, Xiaosong Qiu, Zheng Rong, Xudong
Zou: Dynamic-SLAM: Semantic monocular visual localization
and mapping based on deep learning in dynamic environment
https://www.sciencedirect.com/science/article/
pii/S0921889018308029

[5] Huijing Zhao, Masaki Chiba, Ryosuke Shibasaki, Xiaowei Shao, Jinshi
Cui, Hongbin Zha: SLAM in a Dynamic Large Outdoor Environ-
ment using a Laser Scanners https://ieeexplore.ieee.org/
stamp/stamp.jsp?arnumber=4543407

[6] Mina Henein, Gerard Kennedy, Robert Mahony and Viorela Ila:
Exploiting Rigid Body Motion for SLAM in Dynamic Environments
https://natanaso.github.io/rcw-icra18/assets/
ref/ICRA-MRP18_paper_13.pdf

[7] Sameer Agarwal and Keir Mierle and Others: Ceres Solver http:
//ceres-solver.org/

https://doi.org/10.1007/s11771-016-3320-9
https://doi.org/10.1007/s11771-016-3320-9
http://www-personal.umich.edu/~axe/Ax%20Bennett%20Landscape%20BJPS%201993.pdf
http://www-personal.umich.edu/~axe/Ax%20Bennett%20Landscape%20BJPS%201993.pdf
http://www-personal.umich.edu/~axe/Ax%20Bennett%20Landscape%20BJPS%201993.pdf
https://arxiv.org/abs/1809.08379
https://www.sciencedirect.com/science/article/pii/S0921889018308029
https://www.sciencedirect.com/science/article/pii/S0921889018308029
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4543407
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4543407
https://natanaso.github.io/rcw-icra18/assets/ref/ICRA-MRP18_paper_13.pdf
https://natanaso.github.io/rcw-icra18/assets/ref/ICRA-MRP18_paper_13.pdf
http://ceres-solver.org/
http://ceres-solver.org/

	INTRODUCTION
	LITERATURE REVIEW
	THEORY
	DATASET
	IMPLEMENTATION
	Data Association
	Ceres Based Optimizer
	Custom Binary Optimizer

	RESULTS
	CHALLENGES
	FUTURE WORK
	CONCLUSIONS
	References

