Trajectory Planning with Obstacle Avoidance
RRTs, A*, and R*

16-745 Optimal Control and RL - Spring 2020
Team: Into the Unknown

Parv Parkhiya
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213
pparkhiy @andrew.cmu.edu

Abstract—Autonomous vehicles operating in the real world
will not always know about all obstacles in the environment.
Thus, the vehicle must have the ability to plan and re-plan
trajectories around known obstacles and emerging obstacles in
the environment. Currently, there are many trajectory search
algorithms for autonomous driving vehicles. In this paper, we
explore the most prominent trajectory search algorithms like
RRT, A%, and R*. OQur goal is to implement these algorithms to
compare them with one another and determine their strengths
and weaknesses. ADD SOME DISCUSSION ABOUT WHAT
WORKED THE BEST We also implement a minor extension to
efficiently update the RRT in case of new obstacle information
without re-planning from scratch.

I. INTRODUCTION

When selecting a trajectory planner for an autonomous
vehicle, we must explore the trade-off between the creation of
the optimal trajectory and the speed of trajectory generation.
Both aspects of this trade-off are important. Usually getting
an optimal trajectory takes extremely long time. If the
trajectory generation speed is too slow, the vehicle may not
be able to change its current trajectory in time to avoid a
newly detected obstacle. Therefore we want a planner that
gives optimum or close to optimum result in a reasonable time.

To ensure that both aspects of this trade-off are explored,
three different search algorithms are explored in this paper.
First, we chose a higher level trajectory planner, Rapidly
Exploring Random Trees (RRTs). Then we chose a low-level
trajectory planner, A*, which is guaranteed to achieve an
optimum solution. We also look at weighted A* that gives
early convergence at a cost of Optimality. Lastly, We explore
the R* approach that’s attempts to do better than weighted
A* by mixing aspects of RRT and A*. This algorithm is not
guaranteed to achieve the optimum solution on each created
trajectory but is suppose to achieve it quickly. All algorithms
are constrained in order to reflect the approximate dynamics
of a bicycle model.

We began our investigations implementing all three of the
above planners within an environment in which all obstacles
are known. This was to evaluate the speed and accuracy
of each of the planners to aid in planner selection for our

John Zucca

Electrical and Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA 15213
jbzucca@andrew.cmu.edu

adaptive environment planner. Once we determined which of
the planners was best suited for our adaptive environment
task, this planner was tested in our adaptive environment,
which kept obstacles hidden from the planner and controller,
until it was within a fixed distance from the vehicle.

II. ENVIRONMENT AND CONTROLLER DETAILS

The platform that we chose for evaluating this task was the
Robot Operating System (ROS). Our environment consisted
of a 20 meter by 20 meter plane of allowable space for our
vehicle to traverse. We set up numerous goal positions, or
waypoints, for our vehicle to obtain. These waypoints were
defined using both (X, Y) coordinates and a vehicle direction,
theta. These waypoints were fixed to only occur within a 20
meter by 20-meter plane at the center of the environment to
prevent waypoints that would cause the vehicle to leave the
15 by 15 meters environment. waypoints were also generated
such that they would not be present within any of the obstacles.

To properly test these algorithms, we wanted to present
the planner with a combination of easy and difficult obstacle
patterns. An example of the obstacle pattern that was used
for testing can be seen in figure 1.

Fig. 1. Obstacle Environment

For the purpose of simulating a vehicle driving in this
environment, we imposed the following assumed constraints
on our vehicle that is modeled using bicycle dynamics:

e Wheelbase = 0.335m

e Minimum turning radius = 0.67m

e Maximum steering angle = 30degrees
o Maximum velocity = 1m/s

o Maximum acceleration = 4m /s

o Maximum deceleration = —4m /s>

A simple controller was created to follow trajectories in
the environment in order to prove that the generated trajec-
tories were feasible and avoided all obstacles. This controller
supported both driving in forward and reverse directions at
low speed. This mode of driving would most closely resem-
ble driving in a parking lot, where low vehicle speeds are
required. The controller implements a trajectory look-ahead
to determine both the steering angle and whether the vehicle
should be operating in reverse or forward gear. It’s important
to note that the focus of the project is the planning aspect and
only a basic controller is implemented for completeness.

III. IMPLEMENTATION OF EXISTING ALGORITHMS
A. RRT Algorithm

1) General Algorithm Details: Rapidly exploring random
tree (RRT) [1] as the name suggests rapidly explores the
given space to find a feasible path. While extension like RRT*
attempts to get close to optimal, RRT, in general, are not great
in getting the optimal result. The expansion of the existing tree
is shown in the fig 2. It involves the following steps

i) Sample a random point in the space
ii) From the existing tree structure find the closest point
iii) Consider the new node from the closest point in the
direction of the sampled point
iv) Add the node if edge’s intersection with the obstacle is
null

Back pointer for every new node is also stored. The above
steps are repeated in a loop till a node close enough to the
goal is added in the tree and the entire path is constructed by
recursively going back through the back pointer.

-15 T
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Fig. 2. Expanding a tree in RRT

RRT with nonholonomic constraints:
The path generated by naive RRT isn’t necessarily a feasible
path that could be followed by a vehicle with nonholonomic

constraints. To account for these motion constraints, a slight
modification would be required. Instead of extending the
closest node trivially in the direction of the sampled node,
multiple controls are randomly sampled and trajectories are
rolled out from the closest node. The specific trajectory that
brings the vehicle closest to the sampled point is chosen and
corresponding control is also stored. The trajectory-rollout
uses the vehicle motion model and hence generated path
between nodes is always feasible.

2) Implementation Details: We implemented both the naive
version of RRT as well as the RRT with the nonholonomic
constraints from scratch. A minor trick to speed up the
convergence of the RRT is to use bias sampling. While we
don’t want to sample all the points near the goal region to
avoid getting stuck in local minima. From time to time, we do
want the sampled point to be near the goal so that tree is more
incentivized to grow towards the goal. Our implementation
samples point in the goal region with some probability and
remaining times uniformly in the arena. As shown in figure 3,
after adding the goal bias the convergence happens quickly and
the tree has far fewer nodes compare to without bias version.
Having too high goal bias also leads to long convergence time
because of getting stuck in local minima. Having 20% goal
bias seemed to work well on the preliminary tests.

15

Without Goal Bias Goal Bias 25%

Fig. 3. RRT with and without goal bias sampling

We have used step length to be 1m. We use an occupancy
grid method to make sure all the nodes and edges are collision-
free. For the RRT with nonholonomic constraints, we used 10
trajectory rollouts using randomly sampled allowable steering
angles and 1-meter arc length. We have also added the ability
to reverse the vehicle which is especially useful for tasks like
parking in a confined space.

The costliest operation in the RRT algorithm is finding the
closest node from the sampled node. A naive implementation
would require comparing the sampled node with every existing
node in the tree. But as the tree size grows, the time to find
the closest node will also grow. We used kd-tree to efficiently
find the closest node in the tree. Kd-tree works like a binary
search but in k dimension. kd-tree brings down complexity
from O(n) to O(log(n)) where n is the existing number of
nodes in the tree.

3) Results: Figure 4 shows the trajectory found by naive
RRT as well as RRT with nonholonomic constraints. There
is also a great deal of randomness associated with RRT and

10.0

7.5 1

< _.

5.0 4
2.5 1
0.0

—2.54

Ny
NP

-10.0 T
=100 =75

—5.0 4

T T T T

=5.0 =25 0.0 25 5.0

10.0

7.5 A

5.0 4

2.5 9

0.0

=2.5 1

-5.0 4

-7.5 4

—

10.0
-10.0

T T T T

-7.5 -5.0 =2.5 0.0 2.5 5.0 7.5 10.0

10.0

7.5 1

5.0 A

2.5

2.5

0.0

=2.5 1

=5.0

-7.51

e

-10.0
-10.0

=7.5 =5.0 =25 0.0 2.5 5.0 7.5 10.0

Fig. 4. Naive RRT (left) and RRT with nonholonomic constraints (right) from start(blue dot) to goal(red dot)

rerunning the algorithm produces different results every time.
The figure has the same start and goal points indicated by blue
and red points respectively. It’s also important to note that the
reverse functionality is enabled, so the path may seem not
smooth at places but it’s just switching between forward and
reverse motion.

B. A* Algorithm

1) General Algorithm Details: The A* algorithm is imple-
mented by representing the vehicle location and orientation
in discrete states, or nodes. The first node is defined as the
vehicle’s current position at the time of planning. The last node
in the trajectory will be the goal position. We maintain two lists
of nodes for this algorithm, an open list, and a closed list. The
open list represents the nodes that have been generated from
a previously explored node but have not been fully explored
themselves. The first node is initially included on the open
list. The closed list represents the nodes that have been fully
explored. When initialized, the closed list contains zero nodes.

Each node has two associated costs, the known cost, g, and
the heuristic cost, h. The known cost is calculated by summing
the costs to travel from node to node along the current path
and it represents the true cost of traveling to the node from the

origin node. The heuristic cost is an estimate of the remaining
cost to achieve the goal position. A graphical representation of
the two types of cost can be seen in figure 6. The formula for
the heuristic cost is a design decision and the quality/efficiency
of the algorithm is dependant on a quality heuristic function.

The algorithm is performed by choosing, from the open list,
the node(s) which has the lowest total cost f(s) to explore
which is given by equation 1.

f(s) = g(s) + h(s)

Then, from this node, generate a list of valid successor
nodes. These are nodes that the vehicle could traverse to
next, so they should be constrained to only feasible next
nodes. For example, in this environment, the successor nodes
shouldn’t violate any steering constraints or run into any
obstacles. For each of the successor nodes, we then evaluate
the true cost from the origin node by adding the g cost from
the parent node and the cost to traverse from the parent node
to the successor node. And we calculate the heuristic cost
from our defined heuristic function. Once the costs have been
calculated we add each node to the open list. If one of these
nodes already exists on the open list, we replace the older

(D

7.5

-100

Fig. 5. Trajectories generated using weighted A* from start(blue) to goal(red)

‘g’ cost

f(s) = g(s) + h(s)
node

‘h’ cost
start

Fig. 6. Conceptual A* cost representation

node only if the calculated true cost, g, for the new node
is lower than the g cost for the old node. This would mean
that we have found a more efficient path from the start path
to that node. Lastly, the parent node that has just been fully
explored is added to the closed list. This loop is repeated
until the goal has been reached.

2) Implementation Details: To set up the A* algorithm for
this environment, we first had to determine how to discretize
the environment. We explored two options. The first method
that we utilized was creating a fixed (X, Y) grid, with .1
meters between each node in both the X and the Y directions.
When creating the potential successor nodes, we chose to
limit these nodes to those within .5 meters of the parent
node, and remove all nodes that would violate the steering
angle constraints of the vehicle or nodes that would violate
an obstacle boundary. This method converged to a solution,
but in doing so, it created a large number of nodes, took a
long time to converge, and generated a jerky trajectory that
would not be comfortable for a human passenger.

The second method for discretizing the environment is
dynamic. We rollout trajectories with some arc length from
the parent node to the successor node by sampling seven

different steering angles distributed evenly within the steering
angle constraints. These nodes obtained through rollout
could be any continuous values and we store these values in
Kd-tree. Before any new node is added, it’s compared with
the closest node in Kd-tree making sure and it’s at least some
fixed euclidean distance away. If it’s too close to the existing
node, it is merged with the closest node. This allowed us to
reduce the number of states that we have to store apriori,
while still allowing continuous state values and creating a
smoother trajectory for the vehicle to follow.

The next design decision that we made in our
implementation was our definition of the real cost function and
the heuristic cost function. We defined the real cost function
as the sum of the euclidean distance between all nodes in
the trajectory. We determined that this would be a good cost
function since it was most indicative of the length of time it
would take our vehicle to follow the chosen path, due to the
vehicle’s constant speed. The heuristic function that we chose
was also similar to Euclidean distance, however, we included
the difference in vehicle orientation to force the vehicle to
obtain the proper orientation to satisfy the requirements of
the goal position. The heuristic function used is defined as
follows: h = \/(Xgoal —X)?2+ (Ygoar — Y)2% + (0g0as — 0)2.

Weighted A*

A* algorithm guarantees an optimal solution but that usually
takes an extremely long time to converge. A simple solution to
get early convergence at the cost of optimally is to do weighted
A*. Weighted A* replaces total cost f(s) from equation (1) to
equation (2) where w > 1 is the weight parameter. Weighted
A* guarantees solution with w * OptimalCost To get early
convergence we are using weighted A* with 2.0 weight value.

f(s) = g(s) +wx h(s) 2)

3) Results: In order to easily recall the trajectory once the
goal has been reached by the A* algorithm, we added the

previous node as part of the description of each node. This
allowed us to reconstruct the trajectory by working backward
from the goal position, adding each parent node to the front
of the trajectory until the start node became the first node in
the trajectory. The examples of the generated trajectories using
our implementation of weighted A* can be seen in figure 5.

C. R* Algorithm

1) General Algorithm Details: Randomized A* search also
known as R* [2] is an extension of the weighted A* algorithm
that attempts to get early convergence while still maintaining
sub-optimal bound of weight A* i.e. cost of the found solution
will be less than or equal to w times the optimal cost.

Fig. 7. conceptual R* graph

R* searches for the solution at 2 spatial scale level. The
low level corresponds to an actual trajectory that vehicle can
follow whereas high-level graphs correspond to meta graph
with a bigger step size where there might or might not exist a
feasible collision-free trajectory. The low-level graph is shown
as a white curve in figure 7 whereas the high-level graph
is shown with yellow nodes and dashed black edges. White
rectangles are obstacles in the scene. The high-level graph
acts as a randomized goal location that pushes the exploration
towards the actual goal while still exploring other possibilities.
Note that some of the edges in the high-level graph intersect
the obstacles and not all low-level trajectory between high-
level nodes is computed.

The high-level graph is also expanded with similar cost as
equation (1) but here g(s) also has heuristic component as
an actual path to reach that node may not be computed yet.
Nodes with the minimum total cost in the high-level graph are
chosen for computing low-level graph in a bound manner i.e.
after a certain time if the feasible path using weighted A* is
not found, the algorithm marks the node as “avoid” and moves
on the next node in the heap. Heap gives priority to the nodes
that are not marked “avoid”. Figure 8 details the pseudo-code
for each iteration of the R* search.

2) Implementation Details: Like the RRT and A*, we also
implemented the R* search algorithm from scratch. It uses a
similar dynamic discretization method for both high-level and
low-level graph as explained in the implementation of A*.
A modified heap data structure is used to efficiently find the

1 select unexpanded state s € I" (priority is given to states not labeled AVOID)
2 if path that corresponds to the edge bp(s) — s has not been computed yet
3 try to compute this path
if failed then label state s as AVOID
else
update g(s) based on the cost of the found path and g(bp(s))
if g(s) > w h(sspart, s) label s as AVOID
else //expand state s (grow I')
let SUCC'S(s) be K randomly chosen states at distance A from s
if goal state within A, then add it to SUCC S(s)
for each state s’ € SUCC S(s),add s” andedge s — s" to T, setbp(s’) = s

O 00 N

—_
—_o

Fig. 8. Single iteration of R* search [2]

node with the smallest cost and kd-tree is used to dynamically
merge with a close-by node.

Heap has been modified to consider the “avoid” flag along
with the total cost to give proper priority. The algorithm also
changes the ¢(s) and ”avoid” flag time to time which requires
the update in the heap data structure which is a non-trivial
task. We have implemented smart workarounds to add new
cost information and discard outdated values in the heap.

High-level nodes are expanded by sampling points at A
distance away with random orientation. A distance is chosen
as 6m. If the goal is less than A distance away from the current
node, the goal node is also added in the high-level graph.
For the low-level graph, weighted A* implemented in the
previous section is used with one modification. If the number
of nodes in the closed list for getting trajectory between two
high-level nodes goes beyond a threshold than weighted A*
search execution is stopped and returned back to R* handle.
That threshold is chosen as a maximum of 1000 nodes in the
closed list.

After convergence, the final trajectory from start to the goal
is obtained by concatenating weighted A* trajectories between
consecutive high-level nodes in the path.

3) Results: Like RRT and unlike A*, there exist a large
amount of randomness is the algorithm. Specifically the sam-
pling of the successor nodes in the high-level graph. Therefore
re-running the algorithm with the same parameters produces
a widely different result based on where high-level nodes are
sampled.

Figure 9 shows the trajectory obtained using R* search
along with the high-level graph. It’s important to note that
since trajectory obtained between nodes using weighted A*
convergence only with some tolerance, the stitch together
final trajectory is not strictly continuous. The discontinuity is
closely related to the convergence criteria threshold. The figure
linearly interpolates between these minor discontinuities.

IV. COMPARISON BETWEEN DIFFERENT METHODS

To compare the results of each method, we chose to
record the average path length and completion time on the
same course. The course consisted of five waypoints and 10
immobile objects. We have used the same gazebo environment
as figure 1. The symbolic depiction of that environment with
waypoints can be seen in figure 11. We also subjectively
viewed the generated trajectories and rated each method on

-5

Fig. 9. R* Generated Trajectory with high-level graph

10.0 10.0
7.5 4 7.5 4
5.0 1 5.0 4
2.5 2.5 1
-2.5 1 2.5 1
—5.0 -5.0 4
=7.5 1 -7.5 1
-10.0 . - - - : v v -10.0 . T . T - T -
-100 -75 -50 -25 00 2.5 5.0 7.5 10.0 -100 -7.5 -50 -25 0.0 2.5 5.0 7.5

Fig. 10. Original RRT (left) and Updated RRT after encountering new obstacle

how feasible and smooth it was. The results of our evaluation

can be found in Table I.

TABLE I
EVALUATION RESULTS ON A STATIC ENVIRONMENT
Trajectory Results

Planner Average (m) Average Trajectory
Pathlength (m) | Duration (s) | Feasibility

RRT 11.76 0.62 Bad

A* 6.205 0.56 Good
R* 9.83 3.92 Ok to Bad

Based on the results in Table I, we determined that the
A* algorithm provided us with the best combination of tra-
jectory feasibility, trajectory accuracy, and speed of trajectory
generation. R* did not provide any benefit over A* for the
chosen environment. We conjecture that, with more compli-
cated environments, R* would provide trajectories much faster
than A*. However, given the environment that was created
for this paper, R* generates a sub-optimal trajectory without
providing any noticeable performance in speed. In fact, R*

pal

Fig. 11. Evaluation Scenario with Waypoints

—

10.0

takes significantly more time to converge.

V. EXTENSION: DYNAMIC ENVIRONMENT

In a real-world scenario, the obstacle map is usually not
known apriori and as the vehicle moves towards the goal, it
encounters new obstacles. With the updated environment, the
old trajectory may not be feasible. A naive solution is to re-
plan from scratch from the current location to the goal location
every time new obstacles are encountered. But we can do better
than that.

Considering the scope of the project and time constraint,
we only implemented the extension for the RRT algorithm.
Whenever a new obstacle is encountered. We quickly divide
the existing tree into two kd-trees. Open kd-tree consists of
nodes that are reachable from the start location and closed
kd-tree consists of nodes from which we can reach the goal.
We expand the open kd-tree with standard RRT rules. If a
newly added node in the open kd-tree coincides with the
closed kd-tree node, then we link those two nodes and now we
have obtained the new feasible path. Figure 10 demonstrates
how after the addition of a new obstacle new feasible path is
obtained.

VI. CONCLUSION

99,99

If we are interested in quickly finding “a” solution without
worrying about the length of the path or how many times
we have to switch between forward and reverse, then RRT
is the way go. But if we are looking for optimum or close
to optimum solution in decent time, weighted A* is the way
to go. While initially, we expected R* to outperform A* in
terms of computation time, In our environment, R* was the
slowest and gave okay results. For the bigger environment, R*
might converge if hyperparameters are tuned properly. Overall
weighted A* seems to work best in our environment both in
terms of computation time and quality of the trajectory.

VII. FUTURE WORK

The RRT’s limitation of not so optimal results is addressed
in the RRT* variant that performs the rewiring to get shorter
trajectories. It would be interesting to compare RRT* results
with the A*, R*.

Handling the change in the environment efficiently is a
difficult problem and poses unique challenges in all three
methods. More thorough investigations are required in each
of them to better handle the change or uncertainty in the
environment.

REFERENCES

[1] LaValle, Steven M. “Rapidly-exploring random trees: A new tool for
path planning”

[2] Maxim Likhachev, Anthony Stentz "R* search”.

[3] A* search algorithm en.wikipedia.org/wiki/A*_search_algorithm

