
Trajectory Planning with
obstacle avoidance

John Zucca (jzucca)
Parv Parkhiya (pparkhiy)

Team: Into the Unknown

16-745 Optimal Control and Reinforcement Learning

COVID-19

Introduction
Motivation and Problem Statement

01.

Overview
Environment Setup and Approaches overview

02.

Current Status
Theory, Implementation, and Result: RRT, A*

03.

To be completed
R* and Proposed Extension

04.

Conclusion
Limitation and Future Work

05.

Content

COVID-19

Motivation

Robots operating in real world will
always have plan and replan around the
obstacles.

● Parking a Car
● Manufacturing using manipulator arm

Problem Statement

Traverse an Ackermann Vehicle
from starting position to goal
position in presence of obstacles

Goal:
Implement and compare classic
approaches and propose an
extension

G

COVID-19

Overview of the project

RRT A* R* Proposed Extension

Gazebo-ROS
Environment

Approaches

Script to generate a gazebo world with random obstacles

COVID-19

RRT
Rapidly Exploring Random Tree

Growing a tree:
● Sample a random point in the space
● From the existing tree structure find the closest point
● Consider the new edge from closest point in the

direction of the sampled point
● If edge’s intersection with obstacle is null, add the edge

and corresponding node in the tree

COVID-19

RRT
(Implementation)

Key Details:

● Implemented from scratch
● A sampled node is sampled near goal region with

some probability (Let’s call it goal bias)
● Step length is also randomly sampled each time
● Kd-Tree for efficiently finding the closest node to

sampled node
● Occupancy grid for validating new nodes and edge

RRT in action

COVID-19

RRT
(Results)

Goal Bias 10%

Without Goal Bias

Goal Bias 25%

COVID-19

A*

Creating a trajectory with A*:
● Maintain two lists of nodes

○ Nodes that have not been explored (open list)
○ Nodes that have been explored (closed list)

● Each node consists of its (x,y) coordinate values and
direction theta.

● Each node has two associated costs:
○ From the start node to the current node (‘g’ cost)
○ Estimated cost (heuristic) to the goal (‘h’ cost)

● Chose the node from the open list with lowest total cost
(g+h) to explore

● Generate a list of successors to this node based on
system constraints (e.g. steering angle and obstacles)

● Evaluate the cost functions for these new nodes and
add each node to the open list.

● If one of these nodes already exists in the open list and
the stored ‘g’ cost is greater, update this node in the
open list, as a cheaper path to this node has been
discovered

● Iterate until the goal has been reached

start

finish

node
‘g’ cost ‘h’ cost

COVID-19

A*

Key Implementation Details:

● Implemented from scratch
● (X,Y) grid defined in .1 meter increments
● ‘g’ cost is defined as euclidean distance
● ‘h’ cost is defined as √((Δx)2+(Δy)2+(Δ𝛳)2)
● Allow successor nodes to be up to .5 meters away
● Each node also store its previous node, allowing

for simple reconstruction of the trajectory

COVID-19

A*
(Results)

No Obstacles

Multiple Obstacles

COVID-19

R*
(Randomized A*)

Key Idea:

● Weighted A*
○ f = g + w*h (where weight(w) > 1.0)

● Bounded suboptimal solution (w*optimalCost) but
can convergence quite early

● Searching at 2 spatial scale level
● High level graph can quickly cover large area but

feasible path between them may or may not exist.
● If certain node in the high level graph is found to be

promising based on heuristic and cost, then only
Low level path is attempted to be calculated using
time-bound weighted A*

goal

start

Visible

Not Visible

Real Time Trajectory Modification

● In practice, not all obstacles are known prior to
driving.

● We must be able to adapt and change our
desired trajectories in real time, as new
information presents itself

● We aim to limit the obstacles that the vehicle can
see during initial trajectory planning, and reveal
these obstacles when they are within a defined
distance of the vehicle.

● We are likely to use the algorithm that yields the
quickest results, as computation time is crucial
for this task

Proposed Extension

Limitations

RRT:
- Not Optimal At All
- Not Smooth
- Convergence not consistent

A*:
- Slow(current implementation)
- Smoother than RRT, but still not

Smooth
- Consumes A Lot of Memory
- Local Minima takes long
- Lack of precision(fixed grid)

R*:
- Sub Optimal

Applicable to all:
- Can not react to new obstacles

introduced at runtime

Limitations

Future Work

A*:
- Optimization of code for faster runtime
- Further refine cost functions
- Explore utilizing a non-fixed grid

RRT:
- Implementing RRT* (if time permits)

R*:
- Full implementation

Proposed Extension:
- Recompute trajectories while vehicle is

moving as obstacles are sensed by the
vehicle

Applicable to all:
- Integrate with Pure Pursuit controller
- Add width of the vehicle into

consideration
- Compare accuracy, trajectory feasibility,

and compute time of each
implementation

COVID-19

Questions?

